If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+54x=0
a = 15; b = 54; c = 0;
Δ = b2-4ac
Δ = 542-4·15·0
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-54}{2*15}=\frac{-108}{30} =-3+3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+54}{2*15}=\frac{0}{30} =0 $
| 15x^2-66x-24=0 | | x-24x/100=38 | | (a×a)-10=15 | | a^2-10=15 | | 7a-16=3a+12 | | a^2-10=35 | | a^2-29.75a+49=0 | | 51+36x=64x-51 | | 102+31x=64x+10 | | a^2-29.75+49=0 | | 11730=p*6 | | b^2-676b-57600=0 | | b2-676b-57600=0 | | x*x-1=3x | | 3n²+603n-16200=0 | | 64-2x=68-3x | | 10x+0.5(x+6)+.25(2x)=4.85 | | 6x-12=24-5x | | 3x+4x+5=6x+5 | | y*y-20y+64=0 | | 80t+16t^2=96 | | y×y-20y+64=0 | | 80t+4.9t^2=96 | | ((20-y)×(20-y))+(y×y)-272=0 | | (20-y)×(20-y)+y×y-272=0 | | (20-y)(20-y)+y×y=272 | | (x*x)+x-10=425 | | (2y^2)-40y+128=0 | | (2Y*2y)-40y+128=0 | | 2Y^2-40y+128=0 | | Y^2-20y+64=0 | | 2x^2-10+17=0 |